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Abstract

Fundamental questions are raised about the existence of a general
intellectual ability, and these are framed as the “ghypothesis.” The research and
views of several prominent scientists are considered and it is concluded that
there is still some debate about this issue, especially when comparing classic
ideas, such as those of Charles Spearman, to more contemporary ideas, such
as those of John L. Horn. To resolve this debate, or at least bring it into focus,
Spearman’s (1904) classic method of “common factor analysis” is presented as
away to test almost any formal hypothesis. This technique is illustrated using
data from the first occasion of eight scales from the Wechsler Intelligence
Scale for Children (WISC; N=204; from Osborne & Suddick, 1972). Several
alternative common factor models are fitted and evaluated for misfit and by
contemporary standards there seems to be more than one common factor
present. For these reasons, the theory of “Fluid and Crystallized Intelligence”
(gelg. from Horn & Cattell, 1969) is now given more support than the theory
of “General Intelligence” (g by Spearman, 1904). There is no doubt that most
research and practicing psychologists will find this result surprising, but using
Spearman’s (1904) own methods, we conclude that a £ factor of intelligence
does not exist.

Introduction

Some of the early history of General Intelligence
Sir Francis Galton’s work in the late 1800s started much of the research
and theory on the assessment of individual differences in intelligence. Galton
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seemed to believe that all intelligent behavior was related to innate sensory
abilities but his attempts to empirically validate that key assumption were
largely unsuccessful. A key turning point was around 1904 when Alfred
Binet & Théodore Simon were commissioned by the French Minister of
Public Instruction to develop a procedure to select children unable to benefit
from regular public school instruction for placement in special educational
programs because they required special services. As it turns out, this was
the beginning (in Western cultures) of a placement system for educational
purposes based on measurable test scores.

Binet & Simon (1905) subsequently published what has been termed an
objective and standardized intelligence test that consisted of thirty subtests of
mental ability, including tests of digit span, object and body part identification,
sentence memory, and so on. In 1908 the subtests were organized according to
the age level at which they could be successfully performed by most children
of normal intelligence. Children were characterized and compared to each
other in terms of their intellectual or mental age. In fact, children who were
considered to be at lower mental ages were never even administered some
of the test items. The Binet and Simon intelligence test was widely adopted
in Europe and in the United States, and many of these subtests, with minor
modifications, are included in the Stanford-Binet intelligence test (see Terman,
1925). Soon afterwards David Wechsler (1949) created his own series of tests
to be used for a wide range of adults (see McArdle et al., 2009) and these were
subsequently made for children as well.

In these early days we can also find that Charles A. Spearman from the
University of London (1904) presented an influential theory of a unitary
intelligence, termed g-theory. Less well known, it seems, is that over the next
few decades he (Spearman, 1927) also developed a way to estimate and test his
g-theory as a mathematical and statistical hypothesis. The latter development
was a most important scientific discovery because it provided a formal way to
reject the single factor hypothesis he himself had created. This was the special
contribution of a great scientist, and this is a lesson that we must all learn
better. Spearman developed a rudimentary form of the techniques of what is
now called factor analysis and he applied these techniques to real data (see
McArdle, 2007a). It seems now that this concept and this approach are once
again embroiled in one of the greatest controversies in all of psychological
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research, no doubt due to its important racial implications (e.g., Herrnstein &
Murray, 1994; Jensen, 1998).

Current sentiments about General Intelligence

My close friend, colleague, and mentor Dr. John L. Horn (University
of Denver, and later the University of Southern California; see McArdle,
2007b) when asked about General Intelligence often used to give intentionally
provocative answers like, “What do I conceive invisible green spiders to be? For
current knowledge suggests to me that intelligence is not a unitary entity of any
kind. Attempts to describe it are bound to be futile” (Horn, 1986, p. 91). There
are probably many others who said such things, but I doubt they said it in
exactly this way.

This opening statement by Horn seems rather different than what
other equally prominent psychologists seem to say. For example, the major
proponent of g theory nowadays seems to be the well-known advocate Arthur
Jensen (1980, 1998). Among many books and articles on the very same topic,
he writes:

“The relationship of the g factor to a number of biological variables and its
relationship to the size of the white-black differences on various cognitive tests
(i.e. Spearman’s hypothesis), suggests that the average white-black difference
in g has a biological component. Human races are viewed not as discrete or
Platonic categories but, rather, as breeding populations that, as a result of
natural selection, have come to differ statistically in the relative frequencies of
many polymorphic genes. The genetic distances between various populations
form a continuous variable that can be measured in terms of differences in
gene frequencies. Racial populations differ in many genetic characteristics,
some of which, such as brain size, have behavioral and psychometric correlates,
particularly g” (from Jensen, 1998).

That is, Jensen assumes that Spearman’s hypothesis was about the nature
of g not the existence of g. While the purported racial differences on g seems
to be driving the debate, at the heart of the matter is the existence of g at all.
That is, if g did not exist, this debate would certainly be moot. Nowadays,
more support for Spearman’s first hypothesis can also be found in the work
of Dr. Douglas Detterman (Professor at Case Western University and Editor
of the Journal Intelligence). Dr. Detterman’s research suggests that g becomes



increasingly dominant at the lower extreme of the 1Q continuum; that is,
correlations among scores on cognitive tests are the highest in individuals
with the lowest IQs. This suggests that people with mental retardation have
a deficit in something that powers all areas of cognition, rather than discrete
deficits in specific information-processing capabilities (Detterman & Daniel,
1989). Once again, Detterman seems to assume the existence of g, and does
not seem to evaluate his results as a tendency of any distribution of scores, but
this leaves us to wonder if this should be considered new evidence of a g factor.

In addition, there is also Dr. lan Deary (prominent Head of Psychology
at the University of Edinburgh) who in his recent book “Looking Down On
Human Intelligence” (2000) points out that some people are more mentally
able than others, and examines the reasons why this is true. While there are no
real differences of opinion expressed, the author inquires about the cognitive
and biological foundations of human mental ability differences and discusses
important ideas from antiquity through the renaissance and enlightenment
to the late 19th century beginnings of scientific psychology. The main body
of his work charts the progress of modern research down through the main
reductionist efforts to account for variance in human intelligence. Concepts
from the fields of psychometrics, cognitive-experimental psychology,
psychophysics, and biology that correlate with psychometric intelligence
differences are described and discussed. It is noted that such correlations are
numerous, often replicated, though usually modest in effect size. Once again,
this work leaves much to be desired in terms of the existence of g.

We can also find Dr. David Lubinski (Professor of Psychology at
Vanderbilt University, and Head of Study of Mathematically Precocious
Youth) saying: “The study of individual differences in cognitive abilities is
one of the few branches of psychological science to amass a coherent body of
empirical knowledge withstanding the test of time. There is wide consensus that
cognitive abilities are organized hierarchically, and C. Spearman’s (1904) general
intelligence occupies the vertex of this hierarchy. In addition, specific abilities
beyond general intelligence refine longitudinal forecasts of important social
phenomena and paint a rich portrait of this important domain of psychological
diversity...” (Lubinski, 2004, p. 96). This specific article identifies and then
reviews five major areas concerning the significance of cognitive abilities and
the methods used to study them. Lubinski suggests that, in models of human

behavior and important life outcomes, cognitive abilities are critical in more
ways than most social scientists tend to realize. Because multiple abilities are
considered in the hierarchy, there is no doubt actually raised here that g is
comprised of more than one concept.

As a final example, we can point to Dr. Linda Gottfredson (Professor at
the University of Delaware) stating “The g factor is a universal and reliably
measured distinction among humans in their ability to learn, reason, and solve
problems.” (Gottfredson, 2004). Dr. Gottfredson is also a leader in the public
policy debate about this topic (see “Mainstream Science on Intelligence,” Wall
Street Journal, 12/13/94). The signers of the Mainstream document were/are
indeed prominent in psychology, but very little effort was made to tell us who
was asked to sign it and did not sign it, and it is doubtful that some of the
signers had completely understood the gravity of their message (see Hauser,
2010).

But the list of notable researchers goes on and on, including many other
areas of research (e.g., see Schmidt & Hunter, 1999, on g and job performance).
What I think this should be taken to mean is that there seems to be broad
agreement that a construct like g does exist and it is a useful construct to have
around and use in psychological research.

Additional scientific evidence

Other important work was carried out on the topic of a general factor of
intelligence. In my own department at USC, for example, J.P. Guilford (1956)
proposed the first version of the “Structure Of Intellect” (SOI) model, including
aContent dimension, Products dimension, and Operations dimension. SOI was
most easily represented as a cube with each of the three dimensions occupying
one side. Each mental ability was then defined by a conjunction of the three
categories, occupying one cell in the three-dimensional figure. In the SO,
there were five categories of Content (i.e., visual, auditory, symbolic, semantic,
and behavioral), six categories of Products (i.e., units, classes, relations,
systems, transformation, and implications), and five kinds of Operations
(i.e., cognition, memory, divergent production, convergent production, and
evaluation), and this led to at least 150 measures of abilities. The SOI theory
was allegedly an open system that allowed for newly discovered categories to
be added in any of three directions. Although orthogonal factor models were



always used to understand the data from many collated lab experiments, the
abilities were believed to be correlated with each other, and the SOI model
suggested where new abilities may be discovered. It follows that in SOI theory
and practice, intelligence was thought to be incredibly complex. This is not a
single g theory. If the SOI was to be believed, then no longer was intelligence a
single innate aspect of human functioning.

A set of debates, published in Psychological Bulletin, pitted a young
psychologist named John L. Horn (then at the University of Denver) up against
the famous USC psychometrist, J. P. Guilford. The seeds of this debate can be
found in Horn’s classic works “A Rationale and Test for the Number of Factors
in Factor Analysis” (1965) and “Subjectivity in Factor Analysis” (1967). But the
debate became more focused with Horn & Knapp’s (1974) complete refutation
of the factorial evidence of Guilford’s popular SOI model of cognitive abilities.
Using statistical simulations they criticized the evidence in favor of SOI theory
by showing how easy it is to use “Procrustean” rotation to obtain virtually
any factorial solution desired, especially one with as many dimensions as SOI
theory (i.e., 120). The response by Guilford (1974, 1980) was heated, to say the
least, but it is no coincidence that the popular SOI model soon lost its elevated
status in psychometric practice. So g theory lived on.

In more recent work, the specific topic of hierarchies of cognitive abilities
has been discussed by many others, with continued agreement. We now have
the seemingly new assertions of Carroll (1998): “The three-stratum theory of
cognitive abilities... proposes that there are a fairly large number of distinct
individual differences in cognitive ability, and that the relationships among
them can be derived by classifying them into three different strata: stratum I,
‘narrow’ abilities; stratum II, ‘broad abilities; and stratum III, consisting of a
single ‘general’ ability (Carroll, 1998, p. 122).”

In terms of more recent methods with policy implications, Wendy
Johnson et al. (2004) in a recent analysis provocatively titled “Just One g:
Recent Results From Three Test Batteries™ start by suggesting reasons why
the concept of a general intelligence factor or g is controversial in psychology.
They point out that one of the most important issues involves g’s identification
and measurement in a group of individuals. That is, if g is actually predictive
of a range of intellectual performances, the factor identified in one battery
of mental ability tests should be closely related to that identified in another
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dissimilar aggregation of abilities. This seems quite reasonable as a method,
but it really seems to require an alternative model. In any case, these authors
addressed the extent to which this prediction was true using three mental
ability batteries administered to a sample of (n=463) adults. Though the
particular tasks used in the batteries reflected varying conceptions of the range
of human intellectual performance, the g factors identified by the batteries
were completely correlated (with correlations approaching or at unity). They
suggested that this result provides further evidence for the existence of a
higher-level g factor and suggests that its measurement is not dependent on
the use of specific mental ability tasks.

Is g-Theory a question to be answered?

So maybe the outrageous sentiment expressed by Horn (1986) is simply
isolated. After all, there do seem to be a lot of people who favor g But I think
not, not really, and more evidence should be considered. In fact, there are many
other credible scientists who have tried to consider this specific topic in detail.
Among the first was the well-known scientist Sir Cyril Burt (1909, see 1949),
a colleague of Spearman, who, although recently discredited for falsifying
genetic estimates, used Spearman’s own data to detect more isolated “group”
factors than found before. This seems to have been the beginning of the idea
of “multiple common factors.” Some time afterwards, the important work
of Thurstone (1938, 1947) made many important contributions to multiple
factor analysis. Thurstone, for example, argued that multiple primary factors
were needed to represent discrete intellectual abilities, and he developed
distinct tests to measure them. Among the most important of Thurstone’s
(1938) “primary mental abilities” are verbal comprehension, word fluency,
numerical ability, spatial relations, memory, reasoning, and perceptual speed.
He suggested these could be found using a “simple structure” form of factor
rotation (see Thurstone, 1947). But he also was among the first to point out
that correlations among multiple common factors could themselves be factor
analyzed, and this could lead to a new concept of higher order g This seeming
compromise offered by a hierarchical g position helped lay the groundwork for
future researchers who proposed hierarchical theories and theories of multiple
intelligences (Ruzgis, 1994). Of course, this influential work on higher order
factors clearly predated Carroll’s later statement by about fifty years.



It is also useful to point out that a graduate student of Spearman’s, R.B.
Cattell (1941, 1998), had already discovered sixteen factors underlying human
personality using the then most advanced and available techniques of factor
analysis. In his effort to bridge the gap between Spearman and Thurstone’s
view, Cattell collected new cognitive data. In Cattell’s analysis of this new
cognitive data, he thought he had found the existence of two general kinds
of intelligence, fluid and crystallized intelligence (termed gg/g. to honor
Spearman; see Cattell, 1943, 1978, 1989). Cattell argued that the data suggested
that g factor represents an individual’s basic biological capacity whereas the
ge represented the types of abilities required for most school activities. This is
provocative, and basically asserts that g¢ is equivalent to g, but was presented
without further evidence. This was broadly taken as evidence suggesting the
utility of a g¢ factor of mental reasoning or thinking abilities and a separation
of g. mental facilities related to knowledge acquisition from the dominant
culture. This seemed a long way from the basic tests of Binet and Simon.
Cattell also labeled three minor general factors as visual abilities (gy), memory
retrieval (g,), and performance speed (g). It is probably important to point
out that subsequently John L. Horn was a graduate student of R.B. Cattell, and
a major developer of this gg/g. theory with adults (see Horn & Cattell, 19663,
1966b, 1967, 1998). Perhaps this partly explains why Horn did not approve of
Spearman’s general factor concept?

Richard E. Snow, (from Stanford University) himself a prominent
educational psychologist who worked with Carroll, but who did not work with
Horn or Cattell, dedicated much of his own work toward studying human
aptitudes and learning environments. He aligned himself with gg/g. theory in
many ways, but he “stressed the importance of looking at individual differences
in cognitive processing and analyzing these processes in relation to variations
in environmental affordances to develop a person-situated interaction theory of
intellect” (see Snow, 1998).

But, obviously, Horn’s statement that g is a fictional concept is not
believed by everyone in the know nowadays, and certainly not by most
psychologists either. I now think it is in our best interests to get to the bottom
of this argument. In most general terms, we can ask “What evidence do we
require for the existence of any important construct in behavioral science?”
But specifically, we want to examine g as a theory. So what are we as new to
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this area expected to believe? I, probably just like you, find this whole debate
somewhat surprising and would like to see this matter settled in a fair and
honest way. The purpose of this article is to do just this. We will examine this
basic idea of g-theory using contemporary statistical models. Unfortunately,
the story also tells us something about the rather wide-ranging human uses
of modern statistical tools. It seems that many people only like and trust the
techniques that tell them what they already know or want to hear.

Factor analytic techniques

Factor analytic techniques have been developed and used by psychologists
for most of the 20th century, and these methods have become especially useful
instudies of individual differences. The key concept in any factor analysis is that
a large number of observed behaviors are a direct result of a smaller number
of unobserved or latent sources termed factors. This theoretical principle
was used by Spearman (1904) in his early studies of the concept of general
intelligence, and it has been applied in a wide variety of empirical studies
to isolate and identify latent factors representing parsimonious and reliable
sources of differences between individuals and groups. In this sense, common
factors in Psychology share much with ideas from other areas of science: e.g.,
the quarks and atoms of Physics, the molecules and elements of Chemistry,
the genes and viruses of Biology, and the unobserved planets and black holes
of Astronomy. These key scientific concepts are not directly observed, but we
imply their existence from a large set of observed measurements.

To describe this general factor theory in the first paper, Spearman first
created a technique for testing hypotheses about latent variables using only
measured variables. He applied the first factor analysis model to a matrix
of correlations from data collected on the school grades and mental tests of
children and, indeed, he suggested that the single factor model fit well. Over
the next 20 years, Spearman posed more technical problems and invented
many solutions for these difficult psychometric issues. He wrote a basic
algebraic model for multiple observed variables based on a single common
latent variable, he considered different ways that the parameters in this model
could be uniquely calculated, and he considered ways to evaluate the statistical
goodness-of-fit of this model to empirical data (see Spearman, 1927).

In order to raise this general factor concept to a high level of a scientifically



respectable theory, Spearman created a strong and rejectable method for
the understanding of individual differences. In my own view, most of the
research that has followed Spearman’s work on this topic has soundly rejected
the simple idea of a single common source of intellectual differences among
people, although I recognize others have different views on this matter (see
Methods section). More importantly, in this early work on factor analysis,
Spearman laid the basic foundation for all modern work in structural equation
modeling (SEM).

This paper uses factor analysis as a generic term for explaining the
processes of describing, testing hypotheses, and making scientific inferences
about unobserved variables by examining the internal structure of multiple
variables (as in McArdle, 1994; McArdle & Nessleroade, 1994). This is
obviously the technique we will use to evaluate the Spearman hypothesis. We
start with a description of the data we will use, and we then describe several
basic factor models for cross-sectional data, The analyses presented here allow
us to address other contemporary issues, including model fitting and factor
rotation, and future directions.

Method

Participants

The set of real data we use here have been presented in several other
publications on developmental data analysis (e.g, McArdle & Epstein, 1987;
McArdle & Nessleroade, 1994, 2012). We have been working with a selected
set of longitudinal WISC (Wechsler Intelligence Scale for Children) data for
about thirty-five years now, and we have shared these data with many other
researchers (see our public website). The original sample of participants
for a longitudinal study of the WISC data were described as: “The original
group consisted of 163 white and 110 Negro preschool children selected from
three counties in Georgia, representative of small rural and medium and large
industrial urban populations. Of the original base group of 273 children who
were tested in the spring before they entered the first grade, 204 were retested at
the end of the first grade, at the end of the third grade, and also upon completion
of the fifth grade. The children who were not retested had moved out of the state
or were no longer in public schools.” Children who transferred to other school
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systems within the state were located and reexamined. At the time of the initial
testing. Spring 1961, the mean WISC full scale IQ was 96.16; SD, 15.6. The age
range of the group was narrow; mean six years one month; SD two months. One
hundred eighteen children were Caucasian, 86 were Negro; there were 95 boys
and 109 girls. [Osborne & Suddick, 1972, p. 84]

We have already tried out many different kinds of analyses with these
longitudinal data, including the beginnings of latent curve analysis (McArdle
& Epstein, 1987), multivariate latent curve analysis (McArdle, 1988), multiple
group factor analysis of latent curves (McArdle, 1989), auto-regression versus
latent curves (McArdle & Aber, 1990), MANOVA (multivariate analysis of
variance) and the beginnings of latent change score analysis (McArdle &
Nesselroade, 1994), and multivariate latent change score analysis (McArdle,
2001). Perhaps the best or most proper way to analyze these data has yet to
be found, but these data have certainly been subjected to many forms of data
analysis (see references listed above). The factor analyses presented now are
new and have not been published elsewhere.

Measures in the WISC
The variables in any study of the Wechsler Intelligence Scale for Children
(WISC; Wechsler, 1949) can be numerous (see Osborne & Suddick, 1972), and
much of the available data were never used. But here we select some of these
data—we use only the first grade data on eight of the WISC sub-scales, each
with its own maximum score. The selected WISC tasks are:
L. Information (IN, 30 points possible) — recall a series of facts that are
known to be correct.
2. Comprehension (CO, 28 max.) — understand what to do correctly in
various situations.
4. Similarities (SI, 28 max.) — suggest the best reasons two things are alike.
4. Vocabulary (VO, 80 max.) — provide proper definitions of specific words
5. Picture Arrangement (PA, 20 max.) — arrange a series of pictures so they
tell a coherent story.
6. Picture Completion (PC, 55 max.) — isolate the missing element in a single
picture.
7. Block Design (BD, 57 max.) — reorganize a series of physical blocks into a
pattern that matches a printed picture (originally from the set of Blocks by
Koh, 1923).



8. Object Assembly (OA, 34 max.) — reorganize cutouts into a pattern that
makes a picture.

Although we realize there are many alternative ways to weight and
transform these scores, we will rely on the simplest method of “proportion
correct.” This is used simply to avoid confusion about the different number
of points actually given to each scale. That is, each raw sub-scale score is first
divided by its maximum possible scores (ranging from 20 to 80), and then
multiplied by 100, so each new raw scale and each weighted composite can
be interpreted as the proportion correct (between 0 and 100) for that scale.
This simple POM (percentage of maximum) transformation does not alter the
distribution of any score, nor does it alter the correlation with other any scores,
but it provides a simple way to make an interpretation in POM terms. (Yes, we
agree this is an easy transformation for any data; see McArdle & Epstein, 1987).

The correlations of all eight WISC scale scores at the first occasion of testing
are presented as a scatter plot matrix in Figure 1 (created with the R-psych
program pairs.panels). This kind of plot shows the generally symmetric and
normal distribution of all scale scores, and the generally positive relationships
among all sub-scales. Table 1 gives all the summary statistics on these
proportion correct transformed scores at the first occasion of measurement

Figure 1: Time 1 (Grade 1, Age 6) Summary
Statistics for 8 WISC subscales
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Table 1: Summary Statistics for Eight Measures from the Wechsler Intelligence
Scale for Children (WISC) from Time 1 (Age 6)

WISC Measure
Plcture Plcture Block Object
Information| Comprehension | Similarities | Ve y| C A Design | Assembly
CcOo VO PC PA BD OA

Means

Raw 6.05 6.20 4.28 16.58 5.72 5.66 4.13 8.80

POM 20.16 22,15 15.30 20.73 28.58 10.29 724 25.89
SD

Raw 176 267 2.06 4.96 240 4.50 3.66 5.51

POM 5.83 9.55 737 6.20 12.14 8.18 6.43 16.21
Correlations

IN 1.000

co 0.530 1.000

Sl 0.539 0475 1.000

VO 0.549 0.589 0.440 1.000

PC 0.421 0.393 0.351 0.405 1.000

PA 0.438 0.408 0.338 0.444 0.289 1.000

BD 0.343 0.323 0.408 0.380 0.385 0.404 1.000

OA 0.403 0.322 0.338 0.462 0.534 0.399 0.583 1.000
Reliabilities 0.66 0.59 0.66 077 0.59 0.72 0.84 0.63

Note: N=204. Values presented as raw scores (items correct) and as a percentage of the maximum score (POM).
Data from Osborne & Sudick, 1972. See McArdle & Epstein 1987, McArdle & Aber 1990, McArdle & Nesselroade
1994 for details of scaling and analyses. Internal consistency reliability values from Wechsler, 1949.

(Grade 1, Age 6). Of most importance, these eight sub-scales of the WISC were
selected to represent one or two separate constructs (see McArdle & Prescott,
1992).

In several earlier reports we have compared our analyses over a single
grouping variable, “Mother’s Level of Education,” before the children entered
the first grade. For convenience, Mother’s Education was initially coded into
three groups (termed MOED)—(0, n=76) Mothers with little or no High
School Education, (1, n=82) Mothers who were High School Graduates, and
(2, n=46) Mothers with Some Post-High School Education. Of course this
grouping and the observational variable it represents was not intended to be
of the same inferential status as a full randomization to group, because we did
not randomly assign anyone to these groups (see McArdle & Epstein, 1987).



Nevertheless, when we put everyone together—that is, when we ignore what
group they are in—we are basically assuming the same model applies to ea?h
group. If we find any evidence that one big grouping may not apply, we will
study this specific grouping question in various ways.

The statistical basis of common factor models

This section is intended to be technical but it is presented without
equations on purpose. Here we provide some details on the statistical model
of factor analysis. This is included mainly to establish factor analysis as a
statistical method, comparable to the analysis of variance (e.g., ANOVA),
among many other well-known techniques. But the non-technical reader may
wish to skip this section (and go directly to the RESULTS) without too much
loss of context, and then return to this section when deemed useful (or even to
try McDonald, 1985).

Figure 2 is a SEM path diagram representing a single common factor
as a latent variable (LV). The common factor score (the circle termed F) is
not directly measured. But this common factor is thought to have its own
variability ($? and to produce the variation in each of the 4 observed variables
(Ym» m=1 to 4) through the common factor loadings (Ay,). The common factor
loadings have all the properties of traditional regression coefficients, except
here the predictor is unobserved (McArdle, 1991). Each of the measured
variables is also thought to have a unique variance (¢m?) that is assumed to
be uncorrelated with other unique factors and with the common factor as

Figure 2: A path diagram of a one factor model
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well. So, although we have many measured variables (Yp,), we only have one
unobserved common factor score (F). As in traditional regression analysis we
presume there is a score for each person and that is multiplied by a group
weight (\y). So the reason we observe variation in any outcome score is partly
due to its common factor component (A, Fp) and partly due to the uncorrelated
unique component (U, n).

This set of assumptions imply that the expectation we have for the
covariance terms among measures includes only common factor variance
while the expected variance terms includes both common and specific
variance. That is, if this single factor model is true, then each variance and
covariance must have a very simple structure.

The expected parameters of this factor model all include the factor
variance term (¢?), so at least one additional restriction will be needed to make
the parameters “uniquely identified.” This is typically done by either restricting
the unknown factor variance (¢* = a positive value, such as 1) or by restricting
one of the factor loadings (¢: = a positive value, such as 1). The specific choice
of the identification “constraint” (also referred to as “setting the metric”)
should not really alter the estimation, fit, or interpretation of the result. That
is, because the predictor variable is unobserved the only parameters that are
really identified are the ratios of the loadings (e.g. Aj / Ai) and these need to
remain the same under any scaling of the metric of the unobserved variable.
But, of course, this is all true if the model is largely correct and not if it is
largely incorrect. So, after adding the appropriate identification constraint (¢
= 1), the new covariance expectations are now more “restricted” and can be
written in the much simpler form. As it turns out, this provides exactly enough
information for us to estimate all factor loadings, and this is used to tell which
measured variables are most closely aligned with the unobserved common
factor and which are not—i.e., the ratio of the loadings are also used to provide
a label for the unobserved common factor. This also means the covariance
expressions can be examined for fit by comparison to real data (using SEM
software), and when this model does not seem to fit, we usually assume the
score model of observable variables is not based on a single common factor.

We typically examine whether or not the one-factor model fits the data by
comparing the observed variances and covariance (S) to the model expected
variances and covariance (X). The index of fit is summarized as a single



number, a likelihood (L), that can be compared to the fit of other alternatives
(L2). Under the assumption of normally distributed residuals, this difference
can be compared to a chi-square distribution (x?) with degrees-of-freedom
(df) based on the differences in the number of model parameters. In this way,
the likelihood difference test is an index of “statistical misfit” (see Lawley &
Maxwell, 1971). There are several other variations of this basic idea of model
misfit (see Browne & Cudeck, 1993, and their RMSEA or &;).

Incidentally, our choice of using M=4 indicators per common factor
should not be considered arbitrary—this is the smallest number of indicators
that offers positive degrees-of-freedom for model evaluation (i.e., df=1). Of
course with only three indicators we could look at the resulting factor loadings
to make sure they are all large and positive. But this is not often done. Instead,
many researchers seem to treat this “extraction” as if it were based on the same
technical procedures used to form the indicators. Unfortunately, while it is
possible to fit a one-factor model with only three indicators, this model always
fits the observed data perfectly (e.g., because there are as many unknowns as
knowns), so we have no way to tell if it is incorrect. However, a perfect fit
is generally not possible with four indicators, so here we do have a way to
examine the model fit.

One additional note may be useful—the “principal components” (PC) of
any set of variables is a weighted linear combination of the observed scores.
We can always calculate the optimal PC by asking for a first weighted linear
combination that has the largest variance. The second PC can be extracted
as an orthogonal projection by calculating the linear combination with the
largest variance of what remains after the first has been removed, and so on. In
this sense the PCs are not latent variables so weighted linear composite scores
can be created for them. In general, the PC approach seems very much like
the common factor approach, and this is the good news. The bad news is that
it is not really possible to test the concept of a PC as a formal hypothesis and
the PC loadings seem to be biased upward (i.e, the values are too large) when
we have a small number of indicators per construct (see McArdle, 1991). Thus,
we can calculate as many PCs as we like, but we do not have any standard
statistical tests of their utility or their potential bias.

If the factor model expectations seems to match the observed data, there
are many ways to restrict this model even further. As a first very general

alternative, we could simply say there is no common factor at all, so all
covariances and correlations are collectively zero. This is a typical “baseline”
or “null” model that, without any doubt, we really must be able to say does
not fit our data. This simpler model could be examined for goodness-of-fit.
Of course we know that if this model fits our data we are effectively finished.
That is, we really must have enough statistical power to reject this no-common
factor hypothesis. If the null baseline model does fit we might as well stop
here because this forms a very simple set of relationships. In another simpler
alternative, we could say that all the factor loadings are equal (as done in a
Rasch-type model; see McDonald, 1999; McArdle, Grimm, Bowles, Hamagami
& Meredith, 2009), and this simpler model could be examined for goodness-
of-fit. If this model fits the observed data we can say the common factor has a
lot of simple properties (e.g., the factor scores can be well estimated by simply
summing up the items). In any case, both the null factors baselines and the
equal loading model are simpler and testable alternatives to the one common
factor concept.

If the simple one common factor model does not seem to provide a good
fit, we can go the other direction and relax some of the model constraints.
For example, we can posit the existence of a second common factor (F), and
a simple version of this model is drawn as Figure 3. In this simple model we
posit that each common factor is related to a specific set of observed variables.
Perhaps it is not clear that this new two-factor model is decidedly more
complicated than the single factor model. But the only difference between
this two-factor model and the one-factor model is the covariance among the
common factors (¢1z). That is, if this value turns out to be the same as the
variance terms (or the factor inter-correlation p;,=1), then this model reduces
to become the one factor model. This holds true even when we have more
variables measured, as in Figure 4. This subtle difference could be important
in the model fit where there is now one degree of freedom difference between
these models, testing the covariance hypothesis, and we can evaluate the gain
in fit (or the loss of misfit). We illustrate this point with the real example later.

The factor analysis approach is more rigid than most people think, but it
is not without its own problems. For example, it appears that simple kinds of
SEMs are the only ones that can be fitted, and this is not true. We can start
with the simple two-factor model of Figure 4 and add one additional factor



Flgure 3: A path diagram of a restricted
two common factor model

loading where the first factor is indicated by variable 4, and the second factor
is not. This is drawn as a path diagram in Figure 5, and it could be a correct
representation of the data, even though variable 4 now loads on factor 1 and
not factor 2. We would fit both models as alternatives, but we would quickly
see they cannot be compared using our standard logic because they have the
same number of parameters and are not proper subsets of one another.

In a different example we can start with the simple two-factor model (of
Figure 5) and add two additional factor loadings where common factor 1
is indicated by variables 4 and 5, and two additional factor loadings

Flgure 4: A two common factor model
(with id constraints)
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Flgure 5: A “non-nested” two common factors model
with unbalanced constraints
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where common factor 2 is indicated by variables 2 and 3. These additional
parameters reduce the number of degrees of freedom (by 4) but the overall
two-factor model is still identified, and unique estimates can be found for all
parameters. We know if we fit this kind of a model we could trim out the
non-salient loadings and, hopefully, have a reasonable fitting model. So here
our data analysis strategy is put to an important test. Do we use our a priori
logic and fit the hypothesized model (i.e., Figure 4)? One advantage to this a
priori approach is that we could use all listed probability calculations. Or do
we fit the exactly identified solution to help us understand our data and gain
a good fitting model? Since we typically do not define everything we could do
here, we cannot correctly use all SEM probability calculations. Of course, in
practice, we often do both anyway! This specific issue is discussed in many
other presentations (e.g., McArdle & Cattell, 1994). Because the overall two-
factor model can be represented with different diagrams (i.e., “rotated” into a
different position) without any change in fit, this means that we have possibly
different parameter values and factorial interpretations.

In general, it is well-known that a comparison of alternative factor models
cannot be judged by goodness-of-fit alone (see Kaiser, 1976; McArdle & Cattell,
1994). Perhaps more importantly, this also illustrates that the highly restricted
two-factor model (of Figures 3, 4, 5) is a specific factorial hypothesis that
can have a “unique solution” and “cannot be rotated” any further. This is the



essential benefit of what is usually termed “confirmatory factor analysis” (see
Tucker & Lewis, 1973; Joreskog, 1971; Lawley & Maxwell, 1963; McDonald,
1985). Just as a clarifying note, in our view, if the factor loading values were all
specified in advance, then this would really be a “confirmatory” approach to
model evaluation. This would mean the entire set of covariances was expected
rather than just the model pattern. But, of course, this very rigid form of
confirmatory factor analysis is hardly ever used.

In the typical unrestricted factor model, we initially estimate a K-factor
orthogonal solution using some “convenient restrictions” (e.g., Lawley &
Maxwell, 1963; Jéreskog, 1971, p.23). In this model the parameters are
“exactly-identified” and require further rotation for interpretation. Exactly the
same solution can also be obtained from a restricted SEM when we place the
minimal constraints necessary for a unique solution. The required constraints
have been previously described by Joreskog (1971), and are repeated in McArdle
& Cattell (1994), to achieve an exactly identified rotation with same index of fit.

These generic statements mean that even more factor loadings can be
estimated than we typically think. Most specifically, if we want to estimate 2
common factors from 8 observed variables we require only 4 constraints, and
this leaves a combination of 12 free elements in the A and @ matrices. One
common way to do this in SEM would be to define a fixed unity for each factor
(e.g» N(m,k)=1) for scaling purposes, and this largely defines what the factor
“is.” To this we add a fixed zero (e.g., A(m,k)=0) in a different location for each
factor, to separate the first and second factor, and to designate what the factor
“is not.” This approach allows the estimation of the six other loadings for each
factor as well as the correlation between the factors. This is termed an “exactly
identified” two-factor solution which means it can be rotated. That is, many
alternative solutions (i.e. with K? constraints) would yield the same goodness-
of-fit (for details, see McArdle & Cattell, 1994).

The range of possibilities for factorial structures for multiple variables is
s0 vast that it is rare to consider “all” possible alternatives. Instead we consider
the goodness-of-fit of the models to be an indicator of whether a specific model
does not fit the data, and we never explicitly know if any specific model is the
best one to fit. As with most models, using the classical arguments of Popper
(1970), “we can reject models with data, but we can never know we have the
best model for any set of data.” Another way to say this is that we can use the
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data to tell us which models are “false,” but we cannot use the data to tell us
which models are “true.”

One of the classical problems in factor analysis with multiple factors is
the definition of the position of the factors with respect to the variables. In
one of the most important developments in factor analysis, Thurstone (1947)
proposed an important meta-theoretical solution to the optimal choice of
these constraints: “One of the turning-points in the solution of the multiple
factor problem is the concept of ‘simple structure.’ It will be shown that this
concept enables us to obtain an invariance of factorial description that has not,
so far, been available by other means....” “When a factor matrix reveals one
or more zeros in each row, we can infer that each of the tests does not involve
all the common factors that are required to account for the intercorrelations of
the battery as a whole. This is the principle characteristic of a simple structure.”
(1947, p.181). “The factorial description of a test must remain invariant when
the test is moved from one battery to another which involves the same common
factors.... The factorial composition of a set of primary factors that have been
found in a complete and over-determined simple structure remains invariant
when the test is moved to another battery involving the same common factors
and in which there are enough tests to make the simple structure complete and
over-determined.” (Thurstone, 1947, p.365).

This concept of simple structure as a goal of exploratory factor rotation
has been very influential in factor analysis because it suggested both rules for
selecting an optimal test battery (i.e., selecting the edges of the conic structure)
and a clear set of scientific and technical restrictions on the resulting loadings
and the transformations needed (e.g, as in Promax, see Browne, 2001). As we
have seen earlier, in contemporary SEM we can impose more than the required
constraints (K?) and obtain an over-identified and, therefore, un-rotatable
solution, but the result model = might not fit the observed S as well. In SEM
the choice of these constraints is used to test the critical hypotheses, and the
cost due to these restrictions is judged in the same way as described before
(i.e., using L%, df, and ¢,). Often these hypotheses are based on simple factor
patterns, especially those where each measured variable loads on one and only
one factor. Although this simple pattern is not a necessary requirement for a
good SEM, most current SEM applications try to achieve this level of “very



simple structure” (after Revelle, 1983). This procedure probably should be
questioned more rigorously.

Results

Overall WISC results

With these possibilitiesin mind, wenow begin a first measurement analysis
by taking the summary statistics for the eight measured WISC variables at the
first occasion (Time 1, Age 6, Grade 1, presented earlier in Figure 1 and Table 1)
and look for a reasonable number of common factors. We should point out
that the eigenvalues of this Time 1 (or Grade 1, about age 6) correlation matrix
can be easily calculated ([A[1]=[3.98, 0.96,0.72, 0.65, 0.52, 0.46, 0.38], and from
this we can see that it is unlikely that we will ever find more than two common
factors (due to the smallish size of the third component). In any case, Table 2
presents a simple example of a contemporary SEM-based factor analysis of
the initial data from the WISC study. Here six alternative SEMs are presented
with the eight WISC variables listed in the rows, and the six models across the
columns. Table 3 is a summary of the goodness-of-fit of these models.

The first model fit (M0) assumes no common factors are apparent, with
an expected value for every correlation as zero. This model, like all those
that follow in this section, does not make any restriction about the variable
variances (0,,%) or variable means (i), so they can be estimated in any way
needed. Typically, these parameters will be estimated at their sample values but
this is not required. Not surprisingly, with N=204 and the current summary
statistics, this simple zero-factors model does not fit the data very well (*=598.
on df=28, £,=0.32). This model fit is poor because the chi-square is relatively
large compared to the degrees of freedom. What we are usually looking for is
a model where the chi-square is less than two times the size of the degrees-of-
freedom and the model parameters all make good sense. But his model is not
intended to fit because it proposes all correlations in Table 1 and Figure 1 are
collectively zero. It is mainly used as a baseline against which we can judge the
fits of other alternatives.

The next model fit (M) is a one common factor model with equal loadings
(see Rasch, 1960; McDonald, 1999). The common factor and its loadings are
identified by requiring the common factor variance to be fixed (at ¢*=<1) and

Table 2: Results for Alternative Factor Models of WISC Data from First Occasion

Model
(Mo) (M1) (M2) (M3) (M4) (Ms)
Zero One-Factor One Two Common Two Common Two Common
Common Rasch Common Factors- Factors— Factors~
Factors Model Factor _|Verbal & Performance Relaxed Restricted
| Group Effects
A(N) 477 421 4.36 4.29 439
=0 (17 (11) (12) =0 (11) =0 (12) =0
[0.78] [0.72 [0.75] [0.74] [0.75]
ACO) AT7 6.55 6.89 8.57 -2.03 6.94
=0 ) (10) (11) =0 7) 1.7 (1) =0
[0.55] [0.69] [0.72] [0.90] | [-0.21] | [0.73]
AS) 4.77 4.69 4.81 4.63 0.10 4.76
=0 ) (10) (10) =0 (6) ©1) | (10) | =0
[0.65) [0.64] [0.66] [0.63] | [0.01] [ [0.65)
AVO) 4.77 4.57 469 4.68 4.69
=0 ™ (12) (12) =0 (12) =0 (12) =0
[0.75] [0.74] [0.78] [0.76] [0.76]
APC) 4..77 724 7.75 3147 5.09 291 542
=0 ) ©) =0 O | (26 @ ey @
[0.42) [0.60] [0.64] | [0.26] | [0.42) | [0.24] | [0.45]
APA) 4::17 4.82 4.68 3.58 152 343 175
=0 ‘) ©) =0 8) ) (.7 @ | @1
[0.59] [0.59] [0.57] | [0.44) | [0.19] | [0.42] | [0.22]
A(BD) 4.:/7 3.79 4.42 4.48 4.49
=0 ) 9) =0 (10) =0 (10) =0 (10)
[0.67] [0.59] [0.69] [0.67] [0.70]
A(OA) 4.37 10.37 1248 13.62 13.55
=0 *) ©) =0 (12) =0 (12) =0 (12)
[0.32) [0.64] [0.77) [0.84] [0.84]
Individual Effects
olap - =10 =10 =10 [=10] =10 =t0 [=10] =10
oV\P} _ - _ 0.772 (14) 0.692 (11) 0.657 (10)
[0.77) [0.69] [0.66)
Model Fit Indice:
K (df) 598 (28) | 139(27) 78 (20) 45 (19) 24 (15) 27 (17)
dy? (ddf) - 459 (1) 61(7) 33(1) 21(4) 3(2)
P(perfectfit) | p<.01 p<.01 p<.01 p<.001 p<.07 p<.052
€a 032 0.14 0.12 0.08 0.05 0.06
P(close fit) p<.01 p<.01 p<.01 p<.046 p<.041 p<.38

Note: the symbol "=" indicates a parameter fixed at the indicated value; in parentheses Is the z value for the
parameter estimate divided by its standard error; [ ] indicates standardized coefficlent; — Indicates value not relevant
to the model; * indicates parameter equated across time intervals; dy? - difference in fit, and ddf - difference in
degrees of freedom relative to prior model.



Table 3: The Alternative Fits of Several Common Factor Models of the WISC

Change in
Parms Fit/
(M+V+R) Chi- Prob. Change in Prob. )
Model = Square/dfs | {Perfect Fit} dfs RMSEA {Close Fit}
0Common | 8+8+0= | gqq, 58 <.01 . 0.316 p<.01
Factors 16 98 P
1 Common
Factor 8+8+1=17 190/27 p<.01 408/1 0.172 p<.01
Rasch
1Common |  §+8+8= 78120 p<.01 11217 0.119 p<.01
Factor 24
2Faclors | B8ro= > .01 3411 0.082 0.046
V&P 25 45/19 p>.
Maximum 2 -
Common | 8*&:19% | 19/13 0.0124 2616 0.047 0.490
Factors
Improved
Restricted 8+8+13= . e 0.051 -
2 Common 29 24116
Factors

the common factor mean to be zero (at v=0). Incidentally, this scaling is not
an effort at standardization although it has that effect; it is used to simplify
the expected values (as seen above). Now the resulting factor loading (A=4.77
(17)) forms the expected value for all pairs of covariances (o(j,k)= 4.77%). This
specific value seems a bit odd at first, so we need to explain its meaning. This
is the estimated linear regression coefficient from factor one to each variable,
so it is termed a factor loading here. In typical terms it means that a one unit
shift in people, or a difference between people, in the factor score distribution
would lead to almost a five point shift in the WISC scale score distribution.
But we must remember that these two variables are not on the same scale of
measurement. In theory the standardized factor score ranges from about -3
to +3 and is centered at zero, while the WISC raw score ranges from 0 to 100
and is centered at its mean value (see Table 1). This makes a shift of almost 5
points seem more reasonable, and it will happen in this way for each variable
we consider.
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Since this factor model allows some covariances to exist, this model fits
the WISC data much better (*=139. on df=27, €,=0.14; Ax’=459. on Adf=1).
The fact that the raw loading is the same across all measures does not imply the
standardized loadings (i.e., when both the common factor and the observed
variable have unit length) are all the same size, theyare not ([A]=[ .8, .6,.7, .8, .4,
:6,.7,.3]). It is fairly easy to see that the first four variables, and maybe variable
7 as well, have the highest standardized loadings. The use of a common factor
with a single loading is a reasonable idea if we want to create equally weighted
composite scores for the common factor. In fact this is a necessary feature of a
simple composite scale (see Rasch, 1960; McDonald, 1999) and, unfortunately,
it does not seem to fit well here.

The next model fit (M2) is a more traditional one common factor model
with possibly unequal loadings (see McDonald, 1985, 1999). Since these are
cognitive data, this model represents the idea that we have a General ( g) factor
(among many others, see Jensen, 1980). The common factor and its loadings
are once again identified by requiring the common factor variance to be fixed
(at ¢*=1) and the common factor mean to be zero (at v=0). Now the resulting
factor loadings (Ag=[4.2, 6.6, 4.7, 4.6, 7.2, 4.9, 3.8, 10.4]) form the expected
value for all pairs of covariances (o(j,k)= A(j)*A(K)). Since this model allows
all covariances to exist, it fits the WISC data even better (¥’=78. on df=20,
€,=0.12) and the sequential test of the models is a test of whether the factor
loadings are the same (Ax*=61. on Adf=7). The fact that the raw loadings are
unequal implies that the standardized loadings can be unequal as well ([Ag]=
[.7,.7,.6,.7, .6, .6, .6, .6]). The use of a common factor with unequal loadings
now seems to be a reasonable idea for the WISC, especially if we believe in the
existence of a single g construct of cognition (i.e., Jensen, 1980). The model is
not a perfect fit to these data however, and Table 4 gives a listing of the model
misfits for each covariance we have tried to fit. As we can see here, some of the
misfits are relative large (i.e., BD-OA is 2.517).

Moving on to two common factors

The next common factor model fit (M3) is a restricted two common
factor model with possibly unequal loadings. In this model we presume a
first factor produces variation in the first four observed WISC variables (IN,
CO, SI, VO), while a second possibly correlated factor produces variation in



Table 4: Covariance Model Misfits from One Factor g Solution

IN.6 CO.6 SI. 6 VO.6 | PC.6 PA.6 | BD. 6 | OA.6
IN. 6 0.000
CO.6 0.405 | 0.000
SI.6 0976 | 0473 | 0.000
VO.6 0.170 1.000 | -0.407 | 0.000
PC.6 -0.161 | -0.238 | -0.410 | -0.491 | 0.000
PA. 6 0.134 | 0.031 | -0.561 | 0.101 | -0.872 | 0.000
BD.6 -1.160 | -1.137 | 0407 | -0.768 | 0413 | 0.720 | 0.000
OA.6 -0.815 | -1.619 | -0.963 | -0.157 | 1.900 | 0.277 | 2517 | 0.000

the last four variables (PC, PA, BD, OA). We have used this pattern to mimic
Wechsler’s (1949) theoretical concept of a Verbal (V) factor that is separable
from a Performance (P) or Non-Verbal factor (see McArdle & Prescott, 1992).
The two common factors, and their respective loadings, are here identified by
requiring each common factor variance to be fixed (at ¢,’=1, and ¢,’=1) and
both common factor means to be zero (at v,=0, and v,=0). Now the resulting
MLE factor loadings are mostly higher (A,=[4.4, 6.9, 4.8, 4.7]; Ap=[7.8, 4.7,
4.4, 12.5]) as are the standardized versions ([A,]=[ .8, .7, .7, .8]; [Ap] =[ .6, .6,
.7, .8]). One key feature of this model is the estimation of the two factor inter-
correlation (p,, =[.77]). Since this model also allows all covariances to exist,
but in an even more relaxed pattern, this model fits these WISC data even
better (y*=45. on df=19, £,=0.08). In this specific case, the sequential test of
the models is a test of whether the factor intercorrelation is unity (Ax*=33. on
Adf=1), and it does not seem to be. The use of this V-P common factor model
with unequal loadings but correlated factors is presented in Figure 6. This
model now seems to be a more reasonable idea for the WISC, even though
it argues against the existence of a single construct of cognition (i.e., Jensen,
1980). Of course this model is not a perfect fit to these data, however, and
Table 5 gives a listing of the model misfits for each covariance we have tried to
fit. As we can see here, some of the misfits are still relative large (i.e., IN-PA is
1.401, but not BD-OA which is reduced to .631).

A lot has been made about the relatively high correlation estimate found
among these two new factors in our V&P solution. What we have done in
the comparison of the previous two models is test whether or not this factor
correlation is unity (when it would be a single factor), and this analysis suggests
that it does not seem to be unity. But this is not a test of whether the correlation

Figure 6: Two common factors (M3) for WISC scales
(N=204) using Eight Variables at Age 6

$*={+1.0] $r=[£ 1.0]
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is zero, and it most certainly is not this zero value either. So we are stuck with
a dilemma of modern data analysis: How can independent constructs be so
highly correlated? There are many models for this, including the use of higher
order factor analysis (see Thurstone, 1947) discussed earlier. This approach is
not viable here because we only have two indicators (V and P) or a higher order
factor (g) so there are no degrees of freedom and this means no rejectable test
is possible. Some researchers ignore this problem and fit a higher order model
with as few as three lower order factors, but it is a mistake to think this is a test
of anything at all. Thus we are basically stuck with a correlated factors model
at this level.

Table 5: Covariance Model Misfits from Two Factor V&P Solution

IN.6 CO.6 SL.6 VO.6 | PC.6 | PA.6 | BD. 6 | OA. 6

IN. 6 0.000

COo.6 -0.153 | 0.000

SI. 6 0.611 | 0.017 | 0.000

VO.6 -0.247 | 0.501 | -0.740 | 0.000

PC.6 0.678 | 0489 | 0.379 | 0.412 | 0.000

PA. 6 1.401 1.178 | 0.623 | 1.427 | -1.060 | 0.000

BD. 6 -0.749 | -0.829 | 0.797 | -0.308 | -0.755 | 0.111 0.000

OA. 6 -0.561 | -1.467 | -0.694 | 0.146 | 0.511 | -0.567 | 0.631 0.000




Now perhaps we should not be so disturbed that this journey seems to end
here. After all, this is certainly true for other independently and well-measured
variables such as height and weight. These are scores which are highly positively
correlated (r>.60; see Sargent, 1963) but certainly have independent predictors
and independent outcomes and may be correlated due to being based on living
samples (where height and weight must be correlated).

What we usually require is that these factors, if there are two, behave
in different ways from one another. This behavior is external to the current
analysis and is yet to be determined (for details, see McArdle & Prescott, 1992).
But we would be very skeptical if subsequent models for both variables led
to the same conclusions (they usually do not). Incidentally, Thurstone (1947)
also showed that part of the correlation among factors can be the result of a
non-random sampling of persons. What seems a bit odd about this cognitive
literature is that researchers in this domain seem to ignore these external
features at all and simply continue to advocate g at a higher level where no test
is possible (e.g., Jensen, 1980; Carroll, 1993; Salthouse, 2010).

Exploring the two factor solution further

The previous model was based on a specific hypothesis about the WISC,
and we know it is not the only two common factor model that could be useful.
To consider this possibility we fit the next model (M4). In order to retain a
nested sequence of models, we simply added four factor loadings to the prior
model. Incidentally, we could have added up to three loadings on each factor
and be uniquely estimated (see McArdle & Cattell, 1994). In this way we allow
the first factor, possibly V; to load on PC and PA, and the second factor P, to
load on CO and SIL All other loadings and the factor inter-correlation were
allowed, and the resulting inter-factor correlation is slightly lower (pyp =[.69]).
This model improves the fit a bit more (*=25. on df=15, £,=0.05) and the overall
contribution of the four loadings is evident (Ax*=21. on Adf=4). When we look
at the estimates we see that while the additional loadings on the first factor V
seem like they could be useful (i.e., it seems possible that PA is better off loading
on the first factor, or on both factors), those on the second factor Pyield nothing
at all. In the next model (M5), we simply removed the two small loadings, and
the result is a very clean model. Of course, these exploratory attempts to reduce
or trim the SEM do not have a true probability value. If we did want to go to
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the maximum extraction for two common factors, we could have added two
more factor loadings (and obtained y*=19. on df=13, £,=0.05, p{perfect}=0.12,
plclose}=0.50), but we already have most of the fit. So, in any case, what we now
conclude is that a single factor g is not such a good idea for these WISC data
(c.f., Jensen, 1980), and the basic ideas of V and P, as stated by Wechsler (1949),
may be much better in the long run. We will keep this idea in mind.

Discussion

Conclusion—so where do we stand now?

The result presented here now suggests that there is more than one
common factor in the WISC scores of first-graders. Nevertheless some
researchers would say that a single factor exists among these variables, while
others would say that at least two factors are needed, probably more. But the
latter is not really controversial. As I have tried to demonstrate here, the first
common factor by itself could account for a lot of the covariance among the
measures, almost 50% for that matter, so it must be useful for something. The
large impact of a one factor model is not denied by this analysis. But just to say
that a global composite is useful because it accounts for a large proportion of
observed variance is not typically how we judge the validity of constructs in
contemporary analyses. In contemporary terms, the single ¢ model is overly
simplistic and fails to meet the minimal conditions of the original test (from
Spearman, 1904; see McArdle, 2007a). As an aside, this is one clear place where
the author(s) of the “Bell Curve” went wrong as well. They simply asserted
that there was a g factor and this led to their further confusion about race
differences.

So, to be clear, using the statistical basis of factor analysis we now conclude
“There is not a g factor, there never was a g factor, and we can demonstrate this
with anyone’s data” (see McArdle & Woodcock, 1977; McArdle & Prescott,
1992). It appears the reason other prominent researchers do not come to this
conclusion is because (a) this basic logic of statistical model fitting is ignored,
or (b) there is nothing much better to say (the alternatives do not make sense),
or (c) there is a practical need for a strict rank ordering of persons. I suggest all
of these alternatives are correct to some degree.



Perhaps we need a new definition of intelligence

Given this starting point it is often useful to ask “what else can it be?” That

is, what can we say if we do not have a single dimension to talk about how we
can organize the mental ability differences we observe among people. One
answer has already been provided.
« .. [Iintellectual abilities are organized at a general level into two general
intelligences, viz., fluid intelligence and crystallized intelligence and in terms of
visual, auditory, memory and speed-of-thinking kinds of intelligence. ... there
are those influences which directly affect the physiological structure upon
which intellectual processes must be constructed—influences operating through
the agencies of heredity and injury: in adulthood development these are most
accurately reflected in measures of fluid intelligence. In early (at birth, infancy
and childhood) these influences affect both fluid and crystallized abilities. And
on the other hand there are those influences which affect physiological structure
only indirectly through agencies of learnings and acculturations: crystallized
intelligence is the most direct resultant of individual differences in these
influences” (Horn & Cattell, 1967).

John Horn obviously believed that the weight of the evidence argues
against a general factor (g) as being responsible for all intelligent behavior. The
Cattell-Horn theory of fluid and crystallized intelligence (R. B. Cattell, 1941,
1971, 1998; Horn, 1965; Horn & Cattell, 1966a, 1966b) proposed that general
intelligence is actually a conglomeration of a large number of different abilities
working together in various and different ways in different people to bring out
different intelligences. Their gr-g. theory separates these abilities broadly into,
first, two different sets of abilities that have quite different trajectories over the
course of development from childhood through adulthood.

To quote other sources, “Fluid abilities (gf) drive the individual’s ability to
think and act quickly, solve novel problems, and encode short-term memories.
They have been described as the source of intelligence that an individual uses
when he or she doesn’t already know what to do. Fluid intelligence is grounded
in physiological efficiency, and is thus relatively independent of education
and acculturation (Horn, 1967). The other factor, encompassing crystallized
abilities (g), “stems from learning and acculturation and is reflected in tests
of knowledge, general information, use of language (vocabulary) and a wide
variety of acquired skills (Horn & Cattell, 1967). Personality factors, motivation

and educational and cultural opportunity are central to its development, and it
is only indirectly dependent on the physiological influences that mainly affect
fluid abilities. Many studies have demonstrated that fluid intelligence peaks
in early adulthood and then declines, gradually at first and then more rapidly
as old age sets in after about 70. Crystallized abilities continue to improve
as individuals age (Horn & Cattell, 1967).” “Horn’s most recent work, done
primarily with Hiromi Masunaga suggests that in adulthood people funnel
their abilities into areas of expertise (http://www.indiana.edu/~intell/horn.
shtml).” These more recent extensions to this gr-g. theory are important in a
statistical sense as well.

More than a hundred years ago Spearman made a clear methodological
suggestion—a model dealing with latent variables was possible, to put it to
a rigorous empirical test by measuring multiple realizations of it in the form
of indicators (see McArdle & Prescott, 1992, 2010). This also implies that we
should not confuse Crystallized abilities with Verbal materials and Fluid
abilities with Non-Verbal abilities. Nevertheless, due to the fact that decisions
about goodness-of-fit are relative to the data at hand, comparisons within a
data set can be informative, and absolute rules for goodness-of-fit indices are
useful but typically misplaced. This implies the popular “non-significant x**
or “g, < .05” are not justified in all cases, and it may also be important to
remember Kaiser’s (1976) comment on the statistical basis of factor analysis:
“Delight in its elegant algebra and prose ...but for God’s sake, don’t take it
seriously!” However, even given all these technical caveats there seems to be
no need to drop the whole idea of testability. In fitting any factor model it
is most useful to recall: “Factors in a factor analysis are not things, but they
are our evidence for the existence of things” (R.B. Cattell, 1998). Substantive
knowledge is always needed in the interpretation of a factor analysis.

The second contribution made by Spearman 100 years ago was the
substantive theory of a single underlying and unifying force behind all
intellectual activity—the factor he labeled g In my view, Spearman’s g-theory
has been soundly rejected by the very factor analysis methods he created. I
do not want to seem naive about the ongoing debate where many researchers
and educators still strongly support some form of a g-theory (e.g., among
many others, see the references in Jensen, 1998; Herrnstein & Murray, 1994;
Lubinski, 2004). However, it may be wise to focus on the cases where we can



use Spearman’s factor methods to examine the strength of the structural
model (dfs) and the evidence of goodness-of-fit (¢,) to evaluate g-theory. In the
first example presented in Spearman (1904) the original g-factor argument of
multiple cognitive tests fits nicely (e,<.05). However, in subsequent research
the single factor model uniformly failed at the first-order level. A first attempt
to fix this solution was offered in Burt’s (1909, as reported by Burt, 1949)
“orthogonal group factors” solution. Thurstone (1938, 1947) created the
multiple oblique factors solution widely used today and suggested, again due
to constant lack of fit at the 1st-order, g-theory was reconsidered at the 2nd-
order level. Schmidt & Leiman (1957) showed how the multiplication of the 1st
and 2nd order factor loadings could be used to show the orthogonal impacts
of the 2nd-order factor on the observed variables (i.e., Burt’s group factor
solution with constraints).

In contrast to this other research, Cattell (1941), one of Spearman’s best-
known students, suggested the need for at least two general factors at the 2nd-
order level to adequately represent the available cognitive data; in deference to
Spearman, he labeled these factors as grand g.. When a positive correlation was
found between these factors (p=.5-.7), some naive researchers again suggested
this correlation was supportive evidence for g at a higher level—Spearman’s
factor method points out that any explanation of a single correlation is not
rejectable (i.e., has negative df). More recent SFA research suggested evidence
of g at the 3rd-order in cross-sectional data, but also that this g-factor is
almost entirely related to the 2nd-order gr. For example, Gustaffson (1989)
fit a higher-order factor model with three factors at the 2nd-level and still
made an interpretation of g as gr (based on zero df but with deficient rank, c.f.,
McArdle, 1991). As stated earlier, and more recently, Carroll (1993, 1998) used
the traditional Schmid-Leiman multiplication on a wide variety of correlation
matrices from cross-sectional data and made a similar statement about the g
at the 3rd order being close to gr. But other researchers have been fairly critical
of this slippery movement of g upwards:

“The Humphrey’s lesson about factor analysis supports the argument that
first principal component and IQ measures of intelligence should be banished
from most scientific research. .. The lessons of Humphrey also teach that stepping
up to higher order solutions, as in Schmid-Leiman transformations, do not
solve the problems stemming from the arbitrariness of collections of tests... But

one can calculate this general factor for any mixture of abilities, and there is
no assurance that the factor thus calculated in one arbitrary battery is at all
equivalent to a factor calculated in the same way in another such battery.” (J.L.
Horn, 1989, p.38).

In contrast with this support for hierarchical g-theories, Cattell (1971)
postulated the “investment theory” which suggested any contemporaneous
correlation among g¢ and g was because g; (fluid reasoning) led to the
development (hardening) of the g, (crystallized-knowledge) especially early in
individual development. It is clear that this kind of a developmental theory is
not testable using cross-sectional data alone, so more recent research has used
longitudinal data to model these dynamic hypotheses directly (see McArdle et
al, 2001; McArdle & Hamagami, 2006; Ferrer & McArdle, 2004).

If we are to continue to make progress in the next century in intelligence
research we need to carefully consider the powerful lessons of this g-theory
debate. This is hardly ever a debate about the models of factor analysis, and
the much heralded statistical evidence available in the factor analysis is often
overlooked. The well-known critique by Gould (1981) seems to attack the factor
analysis methods, but it is actually an attack on the misuses of factor analysis
by factor analysts, supposedly due to personal prejudices and policy goals. If
we are to have any hope to create an “objectively determined” set of scientific
results in the future we need to reverse this trend and pay more attention
to the basic evidence that actually emerges from our factor analysis. In this
ironic sense, Spearman’s factor analysis methods should now be considered
an outstanding scientific achievement largely because his more well-known
g-theory should not. Yes, even though I fought it for a very long time, I guess I
have decided that John L. Horn was essentially correct!
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Effect of F&M education on my career

There were at least two influential scientific experiences that I had at F&M.
The first was failing chemistry in my freshman year as a result of choosing
to play freshman football. This was my own idea and it was obviously a bad
one from a professional point of view. The second experience was doing my
senior thesis in psychology with Dr. Richard S. Lehman. From Prof. Lehman,
I learned not only about the use of statistics in psychology, but also about
computer programming and simulation methods of psychological research. I
knew nothing about these issues before this wonderful experience. Ultimately,
this interest in both statistical methods and computer programming proved
very valuable to me, and I have encouraged many other students along the
same lines. Interestingly, this was exactly the path that was recommended to
me by Prof. Lehman during my senior year at F&M.
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Retired President,
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Abstract

A series of studies throughout my research career have illuminated many
of the steps by which basic research leads ultimately to economic rewards.
This sequence started with the TRACES study in the late 1960s (Technology
in Retrospect and Critical Events in Science), which identified the non-mission
and mission oriented research events leadingto 5important technical advances.
The TRACES study was performed essentially by hand, with knowledgeable
experts identifying the events. However, quantitative analysis of the events
did reveal key characteristics of the process, such as a 2030 year lag between
the peak of non-mission research and the eventual innovations, Following
TRACES, more systematic bibliometric (publication and citation) analyses
were initiated to analyze the process more objectively, leading to quantitative
indicators of research performance incorporated in the U.S. National Science
Board’s biennial Science and Engineering Indicators reports, from the first
1972 report to the most recent 2012 report. These indicators delineated the
citation dependence of more applied research on high impact basic research,
and of industrial developments on publically funded basic research. In the
1980s these citation techniques were extended to patents, first patent-to-patent
citation and then to citation links between patents and papers. Key findings in
the 1990s were a rapid increase in the dependence of U.S. technology on basic
and applied science, and that 73% of the science base of U.S. industrial patents
came from publically supported science. In the economic realm it was shown
in 1999 that companies whose patents were highly linked to science, and



